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TWO-EQUATION (k ,  E )  TURBULENCE COMPUTATIONS BY 
THE USE OF A FINITE ELEMENT MODEL 
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SUMMARY 
A finite element technique is presented and applied to some one- and two-dimensional turbulent flow 
problems. The basic equations are the Reynolds averaged momentum equations in conjunction with a two- 
equation (k ,  E )  turbulence model. The equations are written in time-dependent form and stationary problems 
are solved by a time iteration procedure. The advection parts of the equations are treated by the use of a 
method of characteristics, while the continuity requirement is satisfied by a penalty function approach. The 
general numerical formulation is based on Galerkin’s method. Computational results are presented for one- 
dimensional steady-state and oscillatory channel flow problems and for steady-state flow over a two- 
dimensional backward-facing step. 
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INTRODUCTION 

Finite element methods are well established in the field of structural mechanics and their 
applications to fluid mechanics seem to be increasing, although finite difference methods still 
dominate most of this field at present. This is especially the case for the computation of high- 
Reynolds-number flows and turbulent flows.’ 

However, several finite element papers have been published on turbulent flow problems during 
the last few years (see e.g. References 2-1 1). As in the case of finite difference methods, much of this 
work has been related to the solution of the so-called ( k ,  E )  turbulence model in conjunction with 
the Reynolds averaged momentum equations. In addition, many of these finite element studies 
have concentrated on the solution of the steady-state form of these equations. 

Alternatively, one can solve the equations in time-dependent evolutionary form, even for 
steady-state problems. This approach is of course necessary if the aim is to solve problems with 
time-dependent boundary conditions. The present paper presents a finite element method based 
on this approach. The characteristics method is introduced to obtain a stable and accurate 
computation of the advection for both the momentum and the ( k ,  E )  equations. This procedure 
results in a symmetric coefficient matrix for the remaining equation system. The source terms in 
the ( k ,  E )  model are treated in a similar fashion to a commonly used finite difference technique, and 
the velocity, kinetic energy and dissipation are interpolated bilinearly over each element. 
Computational results are presented for some ‘standard’ problems, indicating realistic solutions 
in these cases. 
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MATHEMATICAL FORMULATION 

The Reynolds averaged momentum and continuity equations for incompressible turbulent flow 
without gravity are given by 

Where U i  is the mean velocity, p is the fluid density, P is the mean pressure and z i j  is the mean 
viscous stress tensor defined by 

z i j = p ( u i , j +  uj,ih (3) 

where pis the molecular viscosity. Differentiation with respect to x i  or t is indicated with a comma 
followed by ‘i’ or ‘t’ and Einstein’s summation convention is used. By employing the Boussinesq 
assumption, the Reynolds stress for incompressible flow can be written as 

~ 

- p u j u j = p t ( U i , j +  Uj , i ) -$pkhij ,  (4) 

where p r  is a turbulent viscosity coefficient, hi j  is the Kronecker delta and k is the mean turbulent 
kinetic energy, 

(5 )  
~ 

k = ui ui /2. 

By redefining the pressure as 

the following modification of equation (1)  is derived: 

P* = P + p k ,  

where p, = pl + p is denoted the ‘effective’ viscosity. 
In order to solve the dynamical equations (2) and (7), the turbulent viscosity must be specified. 

Here the two-equation ( k ,  E )  turbulence model is used for that purpose, in which pt is given by 

where C, is assumed to be a constant and E is the rate of dissipation of k. The transport equations 
for k and E are12 

In order to solve the complete equation system (2), (7H1 l), initial and boundary conditions must 
be specified. The boundary conditions applied are as follows. 
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InJlow boundaries 

Specified Dirichlet conditions for all the variables 
(Ui, k, 4. 

Free boundaries 

Traction-free velocity-pressure condition: 

- P: + p e (  Ui,, + U,,,) = 0. 

Zero normal derivative of (k ,  E) :  

(13) 

Wall boundaries 

Logarithmic near-wall conditions: 

U,= U,ln(h+)/x, 

where h+ = 9hU,/v for smooth walls and h+ = 30h/K,  for rough walls; 

k = U l/C:l2, E = U :lkh. 

Here U, is the velocity component tangential to the wall, U ,  is the friction velocity, v is the 
kinematic viscosity, IC is the von Karman constant, K ,  is a roughness parameter and h is a small 
distance from the wall specified by h U J v  > 3 0  for smooth walls. For smaller values the condition 
for U, must be modified. However, in that case the present (k,.c) model should also be 
generalized.' 

An alternative condition for k has also been used,8 namely, assuming a constant k region near 
the wall, implying that ak/dn = 0. With this condition the E condition in (16) can be written in the 
equivalent form 

E = CPl4 k3I2/kh. 

A wall boundary condition must also be specified for the normal component of the velocity. Here 
we have used the form U,  = 0, but a more accurate condition is available.' 

NUMERICAL METHOD 

Equations (7) ,  (9)  and (10) can all be classified as advection-diffusion equations and may be 
written as 

f t  + ujfj = S, (17)  
with only the advection operator written out explicitly. Let the characteristics directions 
associated with this operator be T= T(x) and the corresponding characteristics X(x, t ;  T). When 
U is the velocity field of the fluid, then X(x, t ;  T) represents the particle path that passes through x 
at time t .  These characteristics are determined from the following ordinary differential equation: 

dX/dT=U(X, T), (18) 
with the initial condition 

X( T =  t )  = x. 
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Along these characteristics equation (17) is transformed to 

df(X, T)/dT I T  = = S .  

A semi-implicit discretization of (19) gives 

[f(X"+')-f(X")]/At =(1 -N)s"+' +CIS", a E [0, 11, (20) 

where Xn+l coincides with (x, t"+l)  and X" must be determined from (18). The numerical 
computation of X" was performed by the use of a second-order Runge-Kutta method on the 
velocity field at time t". This application of the characteristics method in a finite element context 
has been studied by several authors'4-' and has some appealing properties: the numerical 
stability is good, no upwinding technique is necessary and the resulting equation system becomes 
symmetric. On the other hand it is not straightforward to implement such a method efficiently. 

A formulation corresponding to (20) is now applied to all the governing equations ((7), (9) and 
( 1  0)), which are multiplied by a weighting function, integrated over the computational domain 
and subsequently discretized by the use of a standard Galerkin finite element method. A penalty 
approximation is applied to satisfy the continuity and, following a conventional 
procedure, the discretized equations can finally be written in the following form: 

(M/At +( 1 -a) [D + rCL-'CT] >V+ =(M/At)U"(X") +( 1 -a)F"+' 

+ aF" - a(D + rCL-'CT)U" - aCP"+l, (21) 

(22) pn + 1 = r~ - 1 CTUn + 1. 

Here (U, P) denote the global velocity and pressure vectors, M is the velocity mass matrix, D is 
the diffusion matrix, C is the divergence matrix, L is the pressure mass matrix and F is a vector 
containing boundary condition contributions. The parameter r is the penalty parameter and c1 

controls the implicitness of the formulation. Because of the large value of r,  which is necessary to 
satisfy the continuity condition, it is important to keep the system A-stable; hence CI should be 
chosen between 0 and i. In these equations the index 'n' denotes the time step and 't' the matrix 
transpose. In the computations the following space discretization was used: quadrilateral el- 
ements with bilinear interpolation of the velocity field and constant (discontinuous) approxi- 
mation of the pressure. 

The total coefficient matrix on the left side in (21) is symmetric, but variable in time. A more 
efficient way to solve this system is to split the diffusion matrix according to 

D(PL,)=D(P*)+D(P, -Po),  (23) 
where p o  is the turbulent viscosity at some previous time. The part D(po) is kept on the left side in 
(21), while the residual part is treated explicitly. This splitting replaces the a-splitting of the 
diffusion matrix in (21) and makes a matrix factorization necessary only each time p,, is updated. 

The corresponding discretized form of the (k ,  E )  equations can be written as follows: 

(M/At+(l --CI)D~}K"+' =(M/At)K"(X")+(l - a)F;+ 

t- ctF; +(1 - N ) S ; + '  + a ( S ; -  D,K"), 

+ aF! +(1 -a)S!+ ' +a@!- DEE"). 

(24) 

(25) 

{M/At + (1 -a)D,}E"+ =(M/At)E"(X")+(l - a)F!+ 

In these equations (K, E) represent the nodal vectors of (k ,  E),  M is the mass matrix, D is the 
combined diffusion and dissipation matrix, S is the source vector and F is the boundary value 
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vector. It should be noted that the advection parts of these equations are treated by the use of the 
method of characteristics, in a similar way to the momentum equations. The space discretization 
of the k and E fields is done by bilinear interpolation in both cases. The source quantities are also 
written in bilinear form, interpolated from averaged nodal values of the velocity derivatives, and 
the dissipation terms are linearized in a way commonly used in finite difference codes.” The 
diffusion and dissipation terms are here collected in the D-matrices in (24) and (25). Finally, the 
turbulent viscosity is computed by application of (8) to the nodal values and bilinearly inter- 
polated over each element. 

The implementation of boundary conditions in these equations is quite conventional, except 
possibly for the velocity-pressure log condition. This condition was implemented via a ‘stress 
boundary’ formulation,” where the stress integral which follows naturally from the Galerkin 
formulation of the momentum equations was used. If the velocity at the boundary is decomposed 
into components normal and tangential to the wall, the tangential component of the stress 
integral takes the form 

F ,  = W (dU,/an + d U , / d ~ ) p ,  dT, (26) 

where W is the weighting function and the integral is over the wall boundary r. The log condition 
is now implemented directly via the normal derivative of the tangential velocity in (26). 

The complete (U, P, K, E) system is solved by a decoupling of the (U, P) and (K, E) systems. The 
velocity-pressure equations are solved from (21) and (22) with a known turbulent viscosity from 
previous computations of the (k ,  E )  fields, while the turbulence model is solved from (24) and (25)  
with previous values of the velocity and viscosity fields. Although the equation system is strongly 
coupled and non-linear, this decoupling procedure was found to work well for all the test cases 
presented here. For stationary problems the time integration acts as an iteration process. 
However, an iteration procedure should formally be applied between each time step when the 
boundary conditions are time-dependent. Numerical experiments with the 1 D time-dependent 
problem studied here, however, showed that more important stability constraints are attributed 
to the implementation of the wall boundary condition (26). Initially this condition was written in 
explicit form, but was later modified to a semi-implicit formulation, which improved the stability 
range substantially. 

APPLICATIONS TO TURBULENT FLOW PROBLEMS 

The computational results presented here were all performed with a=O, i.e. a fully implicit 
formulation, except for the splitting of the diffusion matrix in (23), where an updating procedure 
was implemented to keep the equation system absolutely stable. 

The first test case is for a 1D steady-state channel flow problem with boundary conditions as 
shown in Figure 1 and with a computational grid consisting of 14 graded elements. The Reynolds 
number based on the channel depth is Re,=60000. Results are shown in Figures 2 and 3 for 
velocity and turbulent kinetic energy profiles. It is seen that the predicted velocity profile is in 
good agreement with experimental results,23 but the k level is not very accurately predicted. On 
the other hand the present computations are in close agreement with other numerical results 
based on the same turbulence model’ and improvements of the k predictions for this test can 
probably be obtained by modifications of the model constants. 

The same grid as above was used for the computation of a harmonic oscillating channel flow, 
where a sinusoidal pressure gradient with period T=8.39 s was imposed. Here the kinematic 
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Figure I .  Geometry and boundary conditions for ID channel flow 
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Figure 2. Velocity profile for 1D steady-state channel flow: ---0--, present computation; ---v----, LauferZ3 
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Figure 3. Kinetic energy for 1D steady-state channel flow: -0-, present computation; --v--, LauferZ3 
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viscosity v =  and the bottom surface is rough, with a roughness parameter K,=2.3  cm. 
Experimental results for this problem are given by Jonsson and C a r l ~ e n . ~ ~  The present comput- 
ations were performed with a time step A t =  T/160, which was found to give a satisfactory 
‘convergent’ solution, i.e. smaller time steps did not have much influence on the solution. No 
iterations were performed in these calculations and a time step limit is therefore necessary also for 
stability reasons. In order to reach a periodic solution, the computations were run for about three 
cycles. Results of velocity profiles at different phases are shown in Figure 4 compared with 
measurements. Similar results for the maximum shear stress are shown in Figure 5. The 
agreement is relatively good for the velocity profiles, while the predicted shear stress amplitude is 
somewhat small. The model constants can again be tuned to give better agreement compared 
with measurements, but this was not seriously considered here. It should be noted that the shear 
stress was estimated indirectly in Reference 24, by a vertical integration of the momentum 
equation, and this could also imply some inaccuracy. 

Figure 4. Velocity profiles for 1D 
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oscillating channel flow: -; present computation; A ,  Jonsson and CarlsenZ4 
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Figure 5. Maximum shear stress for 1D oscillating channel flow: -, present computation; A, Jonsson and CarlsenZ4 
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wall law 
Prescribed: 

U,V 

k, E 

The third test case concerns the turbulent flow over a backward-facing step, previously 
reported by several authors.2, 5 ,  O Experimental results are given by Westphal et aL2' among 
others. The present computations were performed for a Reynolds number Re, =42000 based on 
the step height h. The geometry is shown in Figure6 together with the applied boundary 
conditions, the ratio H/h =$, where H is the inflow channel height, and the computational grid 
consists of 21 x 18 graded elements with the outflow boundary situated a distance 17h down- 
stream from the step. The simulation was initiated from the Stokes solution of a laminar flow 
field. Comparisons of numerical and experimental results are shown in Figures 7 and 8 for 
sections located at x/h=4, 8, 12. It is seen that the velocity profile prediction is relatively good in 
the recirculation zone, although the k level is less accurate. Downstream of the reattachment 
point the predicted velocity is less accurate and recovers more slowly to a quasi-1D profile than 
indicated by the measurements. The reattachment point is here computed at approximately 
xR = 8.6, which is somewhat large compared with the measured value of about 7.3-7.5.25q26 It may 
be interesting to note that this result is contrary to other computations, where xR becomes too 
small.''327 However, the same tendency of too slow recovery downstream of xR is observed. It has 

no t ract ion 

k,=E,=O 

1.Sh 

h 

Figure 6(a). Geometry and boundary conditions for backward-facing step 
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Figure 6(b). Finite element grid for backward-facing step 
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Figure 7. Velocity profiles for backward-facing step problem: -.-, present computation; v ,  Westphal et aLZ5 
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Figure 8. Kinetic energy profiles for backward-facing step problem: -, present computation; v, Westphal et aLZ5 

been shown by Autret et al." that modifications of C, will have a relatively strong influence on 
the results. A similar effect was demonstrated by Smith',' by changing the C,-value in the E 

equation. Preliminary results from the present computations indicate that an increased C,-value 
tends to increase the reattachment length. Another problem with the present formulation is the 
boundary condition applied at the lower wall of the channel. The logarithmic condition is 
questionable in the recirculation zone and possible inaccuracies here are automatically transfer- 
red to the conditions for (k ,  6). The latter problem can be solved by using a generalized (k ,  F )  

model,I3 where these equations are solved right down to the wall. 

CONCLUDING REMARKS 

The aim of this study has been to obtain a robust and flexible computational scheme which is able 
to handle stationary as well as non-stationary turbulence problems. The computations presented 
demonstrate the capability of the model to predict the main features of some turbulence problems 
reasonably well. The solution method was designed to be cost-effective; the algebraic equations 
are solved by use of a symmetric skyline profile solver and the system is factorized only when 
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necessary to satisfy the stability requirement. In addition, the complete equation system is solved 
in a decoupled manner. 

Regarding accuracy, the main exception from a conventional FEM discretization is the 
advection solver. The characteristics method has the desirable quality of being absolute stable, 
but it should be noted that the Euler scheme applied may imply some numerical diffusion. In this 
work no direct comparison was made with other numerical methods, except for the 1D time- 
dependent problem, where results were compared with finite difference computations, showing 
close agreement. 

In this study no special attention has been paid to some of the general problems regarding the 
limitations of this kind of model, e.g. the boundary conditions in recirculation zones, possible 
other choices or generalizations of the turbulence model, etc. However, it is believed that some of 
these problems can be studied by application, modification and generalization of the present 
model. 
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